A Geometric Characterisation of Resonance in Hopf Bifurcation from Relative Equilibria

نویسندگان

  • David Chan
  • Ian Melbourne
چکیده

We give a new characterisation of resonance in Hopf bifurcation from relative equilibria in systems with compact symmetry group. This characterisation provides a full geometric explanation of the resonance phenomenon. In addition, we develop techniques based on normal form theory to give a complete solution to the associated bifurcation problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transitions from Relative Equilibria to Relative Periodic Orbits

We consider G-equivariant semilinear parabolic equations where G is a finite-dimensional possibly non-compact symmetry group. We treat periodic forcing of relative equilibria and resonant periodic forcing of relative periodic orbits as well as Hopf bifurcation from relative equilibria to relative periodic orbits using LyapunovSchmidt reduction. Our main interest are drift phenomena caused by re...

متن کامل

Threshold harvesting policy and delayed ratio-dependent functional response predator-prey model

This paper deals with a delayed ratio-dependent functional response predator-prey model with a threshold harvesting policy. We study the equilibria of the system before and after the threshold. We show that the threshold harvesting can improve the undesirable behavior such as nonexistence of interior equilibria. The global analysis of the model as well as boundedness and permanence properties a...

متن کامل

BIFURCATION ANALYSIS OF A DDE MODEL OF THE CORAL REEF

‎In this paper‎, ‎first we discuss a local stability analysis of model was introduced by P‎. ‎J‎. ‎Mumby et‎. ‎al‎. ‎(2007)‎, ‎with $frac{gM^{2}}{M+T}$ as the functional response term‎. ‎We conclude that the grazing intensity is the important parameter to control the existence or extinction of the coral reef‎. ‎Next‎, ‎we consider this model under the influence of the time delay as the bifurcat...

متن کامل

Dynamics of an eco-epidemic model with stage structure for predator

The predator-prey model with stage structure for predator is generalized in the context of ecoepidemiology, where the prey population is infected by a microparasite and the predator completely avoids consuming the infected prey. The intraspecific competition of infected prey is considered. All the equilibria are characterized and the existence of a Hopf bifurcation at the coexistence equilibriu...

متن کامل

Normal Forms, Resonances, and Meandering Tip Motions near Relative Equilibria of Euclidean Group Actions

The equivariant dynamics near relative equilibria to actions of noncompact, nite-dimensional Lie groups G can be described by a skew product ow on a center manifold: _ g = ga(v); _ v = '(v) with g 2 G, with v in a slice transverse to the group action, and a(v) in the Lie algebra of G: We present a normal form theory near relative equilibria '(v=0) = 0; in this general case. For the speci c case...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007